Lattice Fuzzy Signal Operators and Generalized Image Gradients
نویسندگان
چکیده
In this paper we use concepts from the lattice-based theory of morphological operators and fuzzy sets to develop generalized lattice image operators that are nonlinear convolutions that can be expressed as supremum (resp. infimum) of fuzzy intersection (resp. union) norms. Our emphasis and differences with many previous works is the construction of pairs of fuzzy dilation (sup of fuzzy intersection) and erosion (inf of fuzzy implication) operators that form lattice adjunctions. This guarantees that their composition will be a valid algebraic opening or closing. We have experimented with applying these fuzzy operators to various nonlinear filtering and image analysis tasks, attempting to understand the effect that the type of fuzzy norm and the shape-size of structuring function have on the resulting new image operators. We also present some theoretical and experimental results on using the lattice fuzzy operators, in combination with morphological systems or by themselves, to develop some new edge detection gradients which show improved performance in noise.
منابع مشابه
Synthesis and applications of lattice image operators based on fuzzy norms
In this paper we use concepts from the lattice-based theory of morphological operators and fuzzy sets to develop generalized lattice image operators that can be expressed as nonlinear convolutions that are suprema or infima of fuzzy intersection or union norms. Our emphasis (and differences with previous works) is the construction of pairs of fuzzy dilation and erosion operators that form latti...
متن کاملRough approximation operators based on quantale-valued fuzzy generalized neighborhood systems
Let $L$ be an integral and commutative quantale. In this paper, by fuzzifying the notion of generalized neighborhood systems, the notion of $L$-fuzzy generalized neighborhoodsystem is introduced and then a pair of lower and upperapproximation operators based on it are defined and discussed. It is proved that these approximation operators include generalized neighborhood system...
متن کاملFUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY AUTOMATON BASED ON GENERALIZED RESIDUATED LATTICE
This work is towards the study of the relationship between fuzzy preordered sets and Alexandrov (left/right) fuzzy topologies based on generalized residuated lattices here the fuzzy sets are equipped with generalized residuated lattice in which the commutative property doesn't hold. Further, the obtained results are used in the study of fuzzy automata theory.
متن کاملGeneralized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making
The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...
متن کاملCategories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies
Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...
متن کامل